
> y <- 25
> y
 [1] 25

 Rgeneration

August 2018SIGNIFICANCE14

IN DETAIL

Beyond the age of 5, very few people would profess
to have a favourite letter. But if you have ever been
to a statistics or data science conference, you may
have seen more than a few grown adults wearing

badges or stickers with the phrase “I love R!”.
To these proud badge-wearers, R is much more than the

eighteenth letter of the modern English alphabet. The R
they love is a programming language that provides a robust
environment for tabulating, analysing and visualising data, one
powered by a community of millions of users collaborating
in ways large and small to make statistical computing more
effective and efficient for all.

This community solidified into a vibrant culture consisting
of meet-ups, hackathons, data jams, and data visualisation
competitions. Consider that not only is there a Tumblr blog
– accidental-art.tumblr.com – for when R visualisations go
wrong in interesting ways, but that “aRt” from the blog recently
featured at an art show in South Korea.

August 2018 is the 25th anniversary of the creation of R, this
lingua franca of the statistics and data science communities,
and here we tell the story of its birth, growth and development.
The story begins quite unexpectedly, with a chance meeting
between two statistics professors – Ross Ihaka, now retired
from the University of Auckland, and Robert Gentleman, vice
president of computational biology at 23andMe. As Gentleman
explains: “There was no real intention to build anything other
than a toy to play around with ideas.”

It did not stay that way for long. R would bring the
philosophy of collaboration in science to the distribution of
code, democratising statistical computing. From an office in
New Zealand, it scattered across the world into the hard drives
of students and professors, Google data scientists, biologists,
and more. It helped diversify data science intellectually – and it
did all this without charging its congregation a dime.

R history
The history of R is one of good fortune and good choices.
In 1992, Gentleman – then a professor at the University of
Waterloo in Canada – travelled 8600 miles to the University of
Auckland to lecture for three months. One day, he found himself
needing a manual for a particularly tricky piece of software and
Ihaka – still a professor of statistics in those days – was the only
one in the department who had a copy. In time, both realised

they shared an interest in what Ihaka calls “playing academic fun
and games” with statistical computing languages.

Each had questions about programming languages they
wanted to answer. In particular, both Ihaka and Gentleman
shared a common knowledge of the language called
“Scheme”, and both found the language useful in a variety
of ways. Scheme, however, was unwieldy to type and lacked
desired functionality. Again, convenience brought good
fortune. Each was familiar with another language, called “S”,
and S provided the kind of syntax they wanted. With no blend
of the two languages commercially available, Gentleman
suggested building something themselves.

Around that time, the University of Auckland needed
a programming language to use in its undergraduate statistics
courses as the school’s current tool had reached the end of its
useful life. There was one major caveat: the program needed
to run on Macintosh. According to Gentleman, the Department
of Statistics took inventory and decided “that thing Ross and
Robert are working on”, which happened to run on Macintosh,
was better than their current language. The professors called it
R, as both a nod to S and in reference to their forenames.

Ihaka and Gentleman kept the project secret from the wider
community until August 1993, when an email to the S-news
mailing list drew it into the public eye. A Canadian professor
had a familiar problem: he needed a Macintosh version of S.
Ihaka decided it was time to let R see the light of day, telling
the list what the two professors had developed, while asking
that people not “bug us about it” because it was not quite
ready. Soon after, a usable version of R appeared on StatLib, an
online system for distributing statistical software and data.

Though the R we have today is free software, in the mid-
1990s Ihaka and Gentleman were seriously considering
turning R into a commercial product, going so far as to buy a
book on forming a business and asking people familiar with
the field what it would take to sell the software. But ultimately
the idea of selling R struck them as more trouble than it was
worth. “We thought we’d sell five copies to our friends and
that would be it,” says Ihaka. Input from Dr Martin Mächler, an
ETH Zurich statistician who had found R on StatLib, also helped
push R in the direction of free software. Mächler was involved
in the open-source software community and believed that
everyone, regardless of income, should have access to it.

Ihaka and Gentleman agreed with the idea of making R free
software – meaning that people would be free to use, change,
and distribute it as they like. In 1995, the duo made R’s source
code available under a free software licence. Mächler joined
Gentleman and Ihaka as one of the primary developers of R,
taking bug submissions from the public and implementing

The story of a statistical programming
language that became a subcultural
phenomenon. By Nick Thieme

Nick Thieme is a
freelance reporter, with
writings appearing in
Significance, Slate,
BuzzFeed and Undark.
He is also a researcher
with New America’s
Open Technology
Institute, investigating
fair internet usage and
net neutrality.

 Rgeneration

15August 2018 significancemagazine.com © 2018 The Royal Statistical Society

improvements users drew from the source code. At first,
the changes added much needed bare necessities – such as
avoiding complete crashes from loading memory, and ensuring
calculations were correct. Soon, though, users were adding
completely new functionality, making R faster, easier to use,
and able to handle more data.

R community
As the language improved, more users joined – and more
users meant less room for bugs to hide. As fixes and
functions poured in, the names of the submitters began to
look familiar. Usual suspects submitted so frequently that
Ihaka and Gentleman gave them the ability to edit R’s source
code directly because it was easier than managing all the
changes themselves. By mid-1997, 11 people – including Ihaka,
Gentleman, Mächler, Peter Dalgaard, Kurt Hornik, Friedrich
Leisch, and Thomas Lumley – had the keys to R’s source code.
The group fashioned themselves the “R Core” team.

“The users were the developers in those days,” Ihaka says,
and as more of them joined the community, they needed
a place to show off what they had done and download
contributions they found useful. In March 1997, Hornik and
Leisch, of the Vienna University of Economics and Business,
made a Herculean contribution to the R Project by building
the Comprehensive R Archive Network (CRAN). This network
made the essential information and files of R available for
download in one place. Most importantly, CRAN meant users
could browse packages – R’s version of code libraries – and
download the ones they needed.

CRAN makes R shine. Most of the functionality of R is
contained in the packages stored in CRAN, which can be loaded
and used when needed. This makes R more versatile than other
statistical software. Closed-source software, such as SAS and
SPSS, can only be updated by their official developers, whereas
R has a community churning out updates all the time.

But why use packages at all? Base R, as the vanilla
version of R is called, provides the ability to load, export
and transform data, to access probability distributions and
mathematical functions, to run linear models on data, and to
visualise results in visually pleasing ways. Most importantly,
it provides a programming syntax to build larger tools by
tying these individual functions together. If you need to
use an optimisation algorithm, or want to interface with a
website, you can always write enough R code to enable those
functionalities. But writing code that enables you to solve your
ultimate problem is different from actively attempting to solve
that problem, so the time spent writing code is not directly
productive. That is why packages are useful. Instead of taking
the time to rewrite hundreds or thousands of lines of code,
users can download the work of others.

The output of this community of user-developers has grown
phenomenally over the past quarter-century. But at the turn
of the millennium, the language was not yet the darling it is
today. As Lumley, of the University of Auckland and the R Core
team, puts it: “I probably got tenure despite working on R, not
because of it.” The birth of data science changed all that.

In 2000, the R Project released R version 1.0.0, the first
version they felt was ready for public usage. The following
year, several influential statisticians published papers
about data science, and 2003 saw the first academic
journal dedicated to this growing field. For those people
now identifying as data scientists, R, CRAN and the wider
community provided the means to explore and familiarise
themselves with statistical tools and techniques. In turn, those
data scientists added packages to CRAN to help R manage
important data types and models from fields as diverse as
ecology, linguistics, bioinformatics and network science.

Gradually, knowledge of R became a near-prerequisite for
working in data science jobs, and as the milieu of R users grew
to include anyone with data needs, the original community

ROBERT GENTLEMAN ROSS IHAKA PETER DALGAARD

BELOW The original
developers: R’s
creators Robert
Gentleman and Ross
Ihaka, and “R Core”
team member
Peter Dalgaard.

IN DETAIL

SIGNIFICANCE16 August 2018

c()
began to mix with the emerging data science community,
the life science community, and others. As a result, the
idiosyncrasies of the R community – its need to understand
every piece of a software, including the technical nitty-gritty,
and its desire to build software as much as use it – started to
mutate. This new, expanded user base was less interested in
the mechanics of R than in what R allowed them to do, and the
less this new group of users thought about writing R code the
more they could think about their own interesting problems.
This new community found its champion in Hadley Wickham.

Wickham needs as much introduction to the R community
as Kanye West does to Rolling Stone readers. He is currently
chief data scientist at RStudio, but he is famous for his basically
ubiquitous packages including dplyr and ggplot2. Clear writing
is clear thinking, and Wickham sees his packages as a way for
users to write “the notation of data science that makes hard
problems seem straightforward”. His packages allow someone
reading a block of code to comprehend the ideas baked into it
on first inspection; these packages also get the time-consuming
task of programming out of the data worker’s way. Users find
his contributions near-essential. Downloads for dplyr and
ggplot2, plus purrr and devtools, totalled about 1.5 million in July.

The collection of packages championed by Wickham’s
work is typically called the “tidyverse”, and Wickham hopes
they make it easier for people to join the R community and
give them reasons to stick around once they are in. The “little
frictions” inherent in any kind of data analysis “are real and it’s
worth trying to reduce them”, he says.

For example, a package called Reshape recasts messy
data into a canonical shape that other tidyverse packages
are equipped to deal with. Dplyr provides simple methods
for organising analyses and applying more complex
transformations to data. Meanwhile, Wickham’s famous
ggplot2 package provides a “grammar of graphics” to help
users build visualisations. Most of the capabilities in the

tidyverse are also available in base R, but the tidyverse makes
them simpler to use and provides a more intuitive, more
readable syntax (see “Welcome to the tidyverse”, page 19).

Dr Julia Silge, a data scientist at Stack Overflow and author
of the package tidytext, which applies tidyverse principles to
natural language processing, is an example of tidyverse talent.
“If it were not for dplyr and ggplot2, I probably would be a
Python developer,” she says, referring to the other primary
programming language used by data scientists. Tidyverse
principles allow Silge and other developers to “piggyback on
the mature set of packages that already exist”, leaving them to
focus on the specific problems they want to solve.

This “piggybacking” that tidyverse enables is less a break
with the philosophy of base R and more a natural extension of
it. The magic insight of R’s creators was that by facilitating the
creation and distribution of packages containing functions that
make sense and are easy to use, the learning curve for non-
experts could be infinitely flattened out.

As a programming language, R has always been usable
by non-computer scientists; the tidyverse further lowered
barriers to entry. So while programming in Python, Java and
C remains dominated by computing specialists, R has added
users in the life sciences and humanities – and these new
users have very different demographics.

R culture
Like most coding and software communities, R is male-
dominated. But over the past several years, Gabriela de Queiroz
and thousands of others have sought to change that. The
catalyst for action came in 2012, when de Queiroz relocated
from Brazil to San Francisco to attend California State University
for her master’s in statistics. To get involved in the data science
community, she attended data science meet-ups almost daily.
But while she would show up to the meetings, she noticed she
was not contributing to conversations or asking the questions

HADLEY WICKHAM JULIA SILGE

BELOW The new
developers: RStudio's
Hadley Wickham,
tidytext creator Julia
Silge, and R-Ladies
founder Gabriela
de Queiroz.

GABRIELA DE QUEIROZ

17August 2018 significancemagazine.com

>lm
that came to mind. Instead, she “was there learning but not
interacting or taking full advantage because I didn’t see myself
represented in the audience”.

De Queiroz decided she wanted a space to learn about
statistics and data science where reservation was replaced by an
atmosphere of mutual support. On 1 October 2012, she founded
the first chapter of R-Ladies in San Francisco as a place where
women and others could feel comfortable asking questions
and making suggestions. R-Ladies meet-ups were soon held
in Taipei, Minneapolis–St Paul, and London. Today there are
chapters in 122 cities and 28 000 members around the world.

The R-Ladies mission is “to achieve proportionate
representation by encouraging, inspiring, and empowering
people of genders currently underrepresented in the R
community” (bit.ly/2t5MfnZ). But quantifying the precise
degree of that underrepresentation is difficult. There are
no reliable figures on the active R community as a whole,
and until a formal survey is conducted we can only impute
how many users identify as a gender other than male. For
instance, a 2016 analysis of the first names of CRAN package
authors (bit.ly/2t4yc2c) estimated the proportion of female
package authors to be somewhere between 11% and 15%.
The R Foundation Taskforce has also collected demographic
data from its useR! series of conferences; it found that while
gender equity had improved, sometimes tremendously,
the conference was starting from a very low baseline. For
example, the percentage of invited talks given by women
increased from zero in 2004 to 34% in 2016.

As de Queiroz says: “It’s so well known how diverse the
community is not, historically. It has to change.” R-Ladies and
others are working to achieve this through a number of means,
including publishing lists of women statisticians who can be
invited to speak at conferences, encouraging more women to
submit papers, and providing meetings and spaces to support
and develop new R users.

These collective efforts seem to be having an effect. Many
of those interviewed for this article mentioned how much
more welcoming R’s community and culture had become in
recent years. But it was Silge who made this point clearest by
comparing it to her time as a graduate student in astrophysics.
Back then, she says, “I had my fair share of experiences of
asking a question and having a response from a technical
community be dismissive, and when I was making this transition
to data science, I was mentally girding myself for tough times.”
Silge joined the R community in 2015 and since that time, she
says, “my experience … has been almost entirely the opposite”.

This change in culture is nothing but positive for R. The more
welcoming it is, the more diverse the community becomes,

resulting in a new “massive pool of talent that was previously
untapped”, says Wickham.

R future
We have now caught up with R’s story so far, but it is by no
means the end of the tale. What might the future have in store?

Lumley was unsure if another computing language
would be coming to bury R anytime soon, but he felt that
any successor would have to absorb CRAN and its stockpile
of code. Gentleman agreed, saying: “There are really good
algorithms in R, and no one should be reimplementing those.”

The future of CRAN is a popular topic for speculation as
the network is starting to creak under the weight of its own
success. The archive now holds more than 12 000 packages
and is growing near-exponentially. From January to May 2018,
a median of 21 packages were added or updated per day.
From the perspective of the R Core team, there simply are not
enough hours in the day to review and fully comment on every
submission. But users understandably want transparency and
personalised feedback when their packages are rejected, so
this causes friction.

With CRAN growing unabated and – in Peter Dalgaard’s
words – “the original Core team approaching pensionable
age”, the maintenance of R and CRAN will at some point need
to change. R still works well when pulling packages from
websites like GitHub, but downloading packages internally,
through CRAN, is what made R great, and this should surely
remain part of R’s future. The obvious solution – and one the
community seems willing to try – is to increase the number of
people who can review and comment on packages.

In terms of adding new functionality to R, both Silge and
Gentleman called for more seamless communication between
R and other languages. Silge mentioned using Apache Arrow, a
new method for cross-language development, to quickly move
data from R to Python to Spark to Tensorflow, for example.
Interestingly, in April Wickham started dedicating time to Ursa
Labs, a project designed to create a run-time environment for
cross-language data science that is built on Apache Arrow.
Probably related, both Silge and Wickham mentioned exploring
how to represent tree-type data in tidy formats. Someone
looking for R developments in the future should expect to find
tidyverse packages for relational and hierarchical data.

Ultimately, of course, the future of R will be determined by its
community – the people who, over the last quarter of a century,
have donated years of their lives to tweaking the source code,
crafting clever packages and helping new users get started.
These donations of time and effort did not come with the
promise of future monetary rewards. They were made by people
who wanted to see R flourish as a programming language, and
because its community meant something to them.

R is free, open-source software that was created for fun,
reared by committee, and developed by the masses. That such
a software could survive and flourish for 25 years is a credit to
its quality, to its creators, and to its users. “People in the past
would have said you couldn’t do something like this,” says
Lumley. “Now it’s clear that you can.” n

The pick of R packages
To show more of what R can do, we asked several of our interviewees to
write about their favourite R packages. To read their submissions, head to
significancemagazine.com/594. And if you are an R user, please tell us about
your favourite R package in the comments.

IN DETAIL

SIGNIFICANCE18 August 2018

http://bit.ly/2t4yc2c

TABLE 1 “Messy” data on video game sales and review scores. Sales data from VGChartz;
review data from Metacritic. Data set sourced from Rush Kirubi, via Kaggle (bit.ly/2KNZgM9).

Name Publisher
Global sales

(million units) Critic User

Wii Sports Nintendo 82.53 Score = 76,
Count = 51

Score = 8,
Count = 322

Mario Kart
Wii

Nintendo 35.52 Score = 82,
Count = 73

Score = 8.3,
Count = 709

Wii Sports
Resort

Nintendo 32.77 Score = 80,
Count = 73

Score = 8,
Count = 192

New Super
Mario Bros.

Nintendo 29.80 Score = 89,
Count = 65

Score = 8.5,
Count = 431

Wii Play Nintendo 28.92 Score = 58,
Count = 41

Score = 6.6,
Count = 129

TABLE 2 “Tidy” data on video game sales and review scores.

Name Publisher
Global sales

(million units) Rater Score

Wii Sports Nintendo 82.53 Critic 76

Wii Sports Nintendo 82.53 User 80

Mario Kart Wii Nintendo 35.52 Critic 82

Mario Kart Wii Nintendo 35.52 User 83

Wii Sports Resort Nintendo 32.77 Critic 80

Wii Sports Resort Nintendo 32.77 User 80

New Super Mario Bros. Nintendo 29.80 Critic 89

New Super Mario Bros. Nintendo 29.80 User 85

Wii Play Nintendo 28.92 Critic 58

Wii Play Nintendo 28.92 User 66

S
al

es
 (

m
ill

io
n

un
its

)

N
S

M
B

 W
ii

FIGURE 1 Global sales (in millions of units) for the 10 highest selling video game titles. FIGURE 2 Global video game sales (in millions of units) versus user scores.

Welcome to the tidyverse
Here’s an example of how tidyverse packages and principles streamline
the data analysis pipeline, using a “messy” data set of video game sales
and reviews.

Data input
Tidy data has three principles: (1) each variable forms a column; (2)
each observation forms a row; and (3) each type of observational unit
forms a table. We see in Table 1 that the first rule is violated twice. We
have variable levels masquerading as variable titles because “Critic”
and “User” are labels of an unseen variable, “Rater”. We also have two
variables (the rating of a game and the number of reviews) crammed into
each of the Critic and User columns. Another issue is that critic scores are
out of 100, and user scores out of 10. When combining these variables, we
need to readjust the scales.

We can fix these issues using functions in dplyr, a package designed
expressly for the purpose of formatting and transforming data (see
Table 2). By mutating columns into the desired statistics and reshaping
data into useable formats, dplyr can be used in a preprocessing step that
feeds directly into the ggplot package for visualisation.

Graphical analysis
The graphics below were made using the ggplot2 package in R and
an expanded version of the data set shown in Tables 1 and 2. Figure 1
compares sales in millions of units for the top 10 highest-selling games,
while Figure 2 plots user scores against global sales for a wider range
of titles. Although each of the plots looks different, the R code is largely
identical. This is thanks to Wickham’s “grammar of graphics”, which was
introduced with ggplot2.

The basic idea is this. All plots are comprised of three components:
data, a mapping of that data to visual elements, and a geometric shape
that represents the mapped data. These components, along with concepts
like scales, statistical transformations, and coordinate systems, make up
the “grammar of graphics”.

What that means from a practical perspective is that once users learn
how ggplot works, they can create unique plots by changing only a
little bit of code, often only part of a function name. For instance, in our

examples, the bar plot uses “geom_bar()”, plus “fill = Publisher” for
colour, while the scatter plot uses “geom_point()” – those are the major
coding differences between the two graphics.

Global sales versus user score

S
al

es
 (

m
ill

io
n

un
its

)

19August 2018 significancemagazine.com

